class DefaultConfig(object): """默认系统配置信息 """ # Spark streaming启动配置 SPARK_ONLINE_CONFIG = ( ("spark.app.name", "onlineUpdate"), # 设置启动的spark的app名称,没有提供,将随机产生一个名称 ("spark.master", "yarn"), ("spark.executor.instances", 4) ) # Kafka的配置 KAFKA_SEVER = "192.168.19.137:9092" # 增加redis配置:redis的IP和端口配置 REDIS_HOST = "192.168.19.137" REDIS_PORT = 6379 # grpcIP和端口 RPC_SERVER = "192.168.19.137:9999" # grcp启动会初始化排序模型所需的sparksession # SPARK grpc配置 SPARK_GRPC_CONFIG = ( ("spark.app.name", "grpcSort"), # 设置启动的spark的app名称,没有提供,将随机产生一个名称 ("spark.master", "yarn"), ("spark.executor.instances", 4) ) # abtest的实验参数配置格式 from collections import namedtuple # abtest参数信息 # ABTest参数 param = namedtuple('RecommendAlgorithm', ['COMBINE', 'RECALL', 'SORT', 'CHANNEL', 'BYPASS'] ) RAParam = param( COMBINE={ 'Algo-1': (1, [100, 101, 102, 103, 104], [200]), # 首页推荐,所有召回结果读取+LR排序 'Algo-2': (2, [100, 101, 102, 103, 104], [200]) # 首页推荐,所有召回结果读取 排序 }, RECALL={ 100: ('cb_recall', 'als'), # 离线模型ALS召回,recall:user:1115629498121 column=als:18 101: ('cb_recall', 'content'), # 离线word2vec的画像内容召回 'recall:user:5', 'content:1' 102: ('cb_recall', 'online'), # 在线word2vec的画像召回 'recall:user:1', 'online:1' 103: 'new_article', # 新文章召回 redis当中 ch:18:new 104: 'popular_article', # 基于用户协同召回结果 ch:18:hot 105: ('article_similar', 'similar') # 文章相似推荐结果 '1' 'similar:2' }, SORT={ 200: 'LR', }, CHANNEL=25, BYPASS=[ { "Bucket": ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd'], "Strategy": "Algo-1" }, { "Bucket": ['e', 'f'], "Strategy": "Algo-2" } ] )