| Name | Last modified | Size |
|---|---|---|
| Parent Directory | [DIR] | |
| 10,user_profile缺失值处理-低维数据转高维数据_.mp4 | 2022-February-19 01:57 | 55.9 MiB |
| 11,CTR模型训练-数据准备_.mp4 | 2022-February-19 01:57 | 58.83 MiB |
| 12,CTR模型训练-实现_.mp4 | 2022-February-19 01:57 | 27.59 MiB |
| 13,建立广告类别和广告id的匹配关系_.mp4 | 2022-February-19 01:57 | 76.59 MiB |
| 14,结合redis完成商品召回_.mp4 | 2022-February-19 01:57 | 32.37 MiB |
| 15,完成商品的精选及其总结_.mp4 | 2022-February-19 01:57 | 105.49 MiB |
| 1,作业_.mp4 | 2022-February-19 01:57 | 59.5 MiB |
| 2,项目思路整理和数据集切分_.mp4 | 2022-February-19 01:57 | 40.5 MiB |
| 3,申请spark的资源_.mp4 | 2022-February-19 01:57 | 32.67 MiB |
| 4,spark实现数据的读取和评分数据的构建_.mp4 | 2022-February-19 01:57 | 139.04 MiB |
| 5,保存数据模型及其召回商品到redis_.mp4 | 2022-February-19 01:57 | 34.36 MiB |
| 6,raw_sample数据的读取和处理_.mp4 | 2022-February-19 01:57 | 98.63 MiB |
| 7,ad_feature的数据读取和处理_.mp4 | 2022-February-19 01:57 | 27.75 MiB |
| 8,上午小结_.mp4 | 2022-February-19 01:57 | 11.54 MiB |
| 9,user_profile缺失值处理-利用随机森林对缺失值进行预测_.mp4 | 2022-February-19 01:57 | 134.67 MiB |