使子发烧友论坛 bbs.elecfans.com

对于 PCB的设计, AD提供了详尽的 10种不同的设计规则,这些设计规则则包括 导线放置、导线布线方法、元件放置、布线规则、元件移动和信号完整性等规则。 很大程度上,布线是否成功和布线的质量的高低取决于设计规则的合理性,也依赖 于用户的设计经验。对于具体的电路可以采用不同的设计规则,如果是设计双面板, 很多规则可以采用系统默认值,系统默认值就是对双面板进行布线的设置。1、设计 规则设置

从 AD的主菜单中执行菜单命令 Desing/Rules……,系统将弹出如图所示的 PCB Rules and Constraints Editor(PCB设计规则和约束)对话框。

Design Rules	Name	Pri.	En.	Туре	Calegory	Scope		Attributes	
Electrical	Y AssemblyTestpoint	1	-	Assembly Testpoint Styl	Testpoint	AL		Under Comp	Aliow
Bouting	* AssemblyTestPoint	11		Assembly Testpoint Usa	Testpoint	AL		Testpoint - D	ne Rea
± ≔~ SMT	Clearance	1	4	Clearance	Electrical	AI -	Al	Clearance =	10mil
🗈 🛲 Mask	E ComponentClearance	1	1	Component Clearance	Placement	AL .	Al	Horizontal Ck	alanc
E Plane	2 DittPairsRouting	1		Differential Pairs Routine	Routing	AL		Pref Gap = 1	Omil 1
Z Testpont	FabricationTestpoint	1	-	Fabrication Testpoint St.	Testpoint	AL		Under Comp	- Allow
Manufacturing	Y FabricationTestPoin	1		Fabrication Testpoint U	Testpoint	AL		Testpoint - D	ne Rei
+ and High Speed	Tanout BGA	1	-	Fanout Control	Routing	IsBGA		Style - Auto	Direct
± 1 Placement	Fanout Default	5		Fanout Control	Routing	AI		Style - Auto	Direc
+: jir > signar integriy	Fanout LCC	2		Fanout Control	Routing	HLCC.		Style - Auto	Direct
	- Fanout Small	4		Fanout Control	Routing	CompF	inCount < 5]	Style - Auto	Direct
	Fanout SOIC	3	-	Fanout Control	Routing	Is50IC		Style - Auto	Direc
	1 Height	1		Height	Placement	Al		Piel Height -	500m
	The HoleSize	1	~	Hole Size	Manufacturing	AL		Min = 1mil 1	das =
	The Totole Clearan	1	-	Hole To Hole Clearance	Manufacturing	Al -	A1	Hole To Hale	Clear
	T LaverPairs	1		Layer Pairs	Manufacturine	AL		Laser Pairs -	Entore
	MinimumSolderMask	1	-	Minimum Solder Mask S	Manufacturing	Al -	Al	Minimum Sok	der Ma
	P NetAntennae	1		Net Antennae	Manufacturing	AL		Net Antenna	e Tole
	PasteMaskExpansio	1		Paste Mask Expansion	Mask	Al		Expansion -	Omil
	PlaneClearance	1	-	Power Plane Clearance	Plane	AL		Clearance = .	20mil
	PlaneConnect	1	-	Power Plane Connect S	Plane	AL		Style - Relief	Conne
	PolygonConnect	1		Polygon Connect Style	Plane	AI -	AL	Style - Relief	Conne
	25 RoutingCorners	1	-	Routing Corners	Routing	Al		Style - 45 De	gee
	25 RoutingLayers	1		Routing Layers	Routing	AL		NoLayer - Er	abled
	2 RoutingPriority	1		Routing Priority	Routing	AL		Priority = 0	
	35 RoutingTopology	1		Routing Topology	Routing	A		Topology - Si	hortest
	25 RoutingVia:	1		Routing Via Style	Bouting	Al		Piel Size = 5	Oral 1
	The ShortCircuit	1		Short-Circuit	Electrical	Al -	AL	Short Circuit	Not A
	SikscreenOverCom	1	4	Silkscreen Over Compo	Manufacturin;	AI -	All	Silkscreen D	ver Co
	SikToSikOsarance	1		Silk To Silk Clearance	Manufacturing	Al .	Al	Silk to Silk D	earand
	SolderMaskExpansi	1		Solder Mask Expansion	Mask	AL		Expansion =	4mil
	The second second	•	1.4	11 m + 187 1	#10 \$200 F	<u>.</u>			10.0

对话框左侧显示的是设计规则的类型,共分 10类。

左边列出的是 Desing Rules(设计规则),其中包括 Electrica(电气类型)、Routing (布线类型)、 SMT(表面粘着元件类型)规则等等,右边则 显示对应设计规则的设置属性。

该对话框左下角有按钮 Priorities,单击该按钮,可以对同时存在的多个 设计规则设置优先权的大小。对这些设计规则的基本操作有:新建规则、删除规则、 导出和导入规则等。可以在左边任一类规则上右击鼠标,将会弹出下图所示的菜单。 在该设计规则菜单中, New Rule是新建规则; Delete Rule是删除规则; Export Rules是将规则导出,将以 .rul为后缀名导出到文件中; Import Rules是从文件中导 入规则; Report......选项,将当前规则以报告文件的方式给出。

Nev	w Rule
Del	ete Rule
Rep	port
Exp	ort Rules
Imp	ort Rules

2、电气设计规则Electrical(电气设计)规则是设置电路板在布线时必须遵守,包括 安全距离、短路允许等 4个小方面设置。

1. Clearance(安全距离)选项区域设置安全距离设置的是 PCB电路板在布置铜 膜导线时,元件焊盘和焊盘之间、焊盘和导线之间、导线和导线之间的最小的距离。 下面以新建一个安全规则为例,简单介绍安全距离的设置方法。

(1)在 Clearance上右击鼠标,从弹出的快捷菜单中选择 New Rule……选项,

E Shor	New Rule
🕀 💽 Un-F	Delete Rule
Routing	Report
Mask	Export Rules
💽 Plane 🏏 Testpoir	Import Rules

系统将自动当前设计规则为准,生成名为 Clearance_1的新设计规则,其设置

对话框如图所示。

Name Clearance	Comment		Unique ID MRFQDHFI
Where The First Object Ma All Net Net Class Layer Net and Layer Advanced (Query)	Reches	Full Query	
Where The Second Object All Net Net Class Layer Net and Layer Advanced (Query) 	Matches	Full Query A11	
Constraints	Different Nets Only	earance 10mil	

(2)在 Where the First object matches选项区域中选定一种电气类型。在这里选定 Net单选项,同时在下拉菜单中选择在设定的任一网络名。在右边Full Query中 出现 InNet()字样,其中括号里也会出现对应的网络名。

(3)同样的在 where the Second object matches选项区域中也选定 Net单选项, 从下拉菜单中选择另外一个网络名。

(4)在 Constraints选项区域中的 Minimum Clearance文本框里输入8mil。这里 Mil为英制单位, 1mil=10-3 inch, linch= 2.54cm。文中其他位置的 mil也代表同样 的长度单位。

(5)单击 Close按钮,将退出设置,系统自动保存更改。

Where the First chiest	matchan	Full Querry	_
	macries	InNet('No Net')	
Net	lo Net 💌		
O Net Class	•		
O Layer	Query Helper		
 Advanced (Query) 	Query Builder		
Where the Second obj	ect matches	Full Query	
	•	InNet()	
● Net └			
O Net Class			
Net and Laver	Query Helper		
O Advanced (Query)	Query Builder		
- Constraints	Different Nets Only		
	Minimum Cle	earance Smil	

1 Circuit(短路)选项区域设置短路设置就是否允许电路中有导线交叉短路。 设置方法同上,系统默认不允许短路,即取消 Allow Short Circuit复选项的选定, 如图6-6所示。

2 Un-Routed Net(未布线网络)选项区域设置可以指定网络、检查网络布线 是否成功,如果不成功,将保持用飞线连接。

3 Un-connected Pin(未连接管脚)选项区域设置对指定的网络检查是否所有 元件管脚都连线了。

3布线设计规则

Routing(布线设计)规则主要有如下几种。

1.Width(导线宽度)选项区域设置导线的宽度有三个值可以供设置,分别为 Max width(最大宽度)、 PreferredWidth(最佳宽度)、 Min width(最小宽度)三个 值,如图 6-7所示。系统对导线宽度的默认值为 10mil,单击每个项直接输入数值 进行更改。这里采用系统默认值 10mil设置导线宽度。

2. Routing Topology(布线拓扑)选项区域设置拓扑规则定义是采用的布线的拓扑 逻辑约束。AD中常用的布线约束为统计最短逻辑规则,用户可以根据具体设计选择 不同的布线拓扑规则。 AD提供了以下几种布线拓扑规则。Shortest (最短)规则设 置最短规则设置如图所示,从 Topology下拉菜单中选择 Shortest选项,该选项的 定义是在布线时连接所有节点的连线最短规则。

Horizontal(水平)规则设置水平规则设置如图所示,从 Topoogy下拉菜单中选择 Horizontal选基。它采用连接节点的水平连线最短规则。

ropology	Horizontal	
0	(
	0	
		-0

Vertical(垂直)规则设置垂直规则设置如图所示,从 Tolpoogy下拉菜单中选择 Vertical选项。它采和是连接所有节点,在垂直方向连线最短规则。

Daisy Simple(简单雏菊)规则设置简单雏菊规则设置如图所示,从 Tolpoogy下拉 菜单中选择 Daisy simple选项。它采用的是使用链式连通法则,从一点到另一点连 通所有的节点,并使连线最短。

Daisy-MidDriven(雏菊中点)规则设置雏菊中点规则设置如图所示,从 Tolpoogy 下拉菜单中选择 Daisy_MidDiven选项。该规则选择一个 Source(源点),以它为 中心向左右连通所有的节点,并 使连线最短。

[opology	Daisy-MidDriven	*
		0
	Source	1
6 mm		0

Daisy Balanced(雏菊平衡)规则设置雏菊平衡规则设置如图所示,从 Tolpoogy 下拉菜单中选择 Daisy Balanced选项。它也选择一个源点,将所有的中间节点数目 平均分成组,所有的组都连接在源点上,并使连线最短。

opology	Daisy-Balanced	*
9	Source	0
1	Source	1

Star Burst(星形)规则设置星形规则设置如图所示,从 Tolpoogy下拉菜单中选择 Star Burst选项。该规则也是采用选择一个源点,以星形方式去连接别的节点,并使 连线最短。

3. Routing Rriority(布线优先级别)选项区域设置该规则用于设置布线的优先次序, 设置的范围从 0~100,数值越大,优先级越高,如图所示。

Routing Priority	0	\$

4. Routing Layers(布线图)选殴区域设置该规则设置布线板导的导线走线方法。

包括顶层和底层布线层,共有 32个布线层可以设置,如图所示。

Top Layer	Horizontal	
Mid-Layer 1	Not Used	-
Mid-Layer 2	Not Used	
Mid-Layer 3	Not Used	
Mid-Layer 4	Not Used	
Mid-Layer 5	Not Used	
Mid-Layer 6	Not Used	۲
Mid-Laver 7	Not Lised	· ·

由于设计的是双层板,故 Mid-Layer 1到 Mid-Layer30都不存在的,该选项为灰色 不能使用,只能使用 Top Layer和 Bottom Layer两层。每层对应的右边为该层的布 线走法。AD提供了 11种布线走法,

Top Layer	Horizontal	-
Mid-Layer 1	Not Used	
Mid-Layer 2	Vertical	_
Mid-Layer 3	1 O"Clock	
Mid-Layer 4	4 O"Clock	
Mid-Layer 5	45 Up	
Mid-Layer 6	45 Down Fan Out	
Mid-Layer 7	Not Used	

各种布线方法为: Not Used该层不进行布线; Horizontal该层按水平方向布 线;Vertical该层为垂直方向布线; Any该层可以任意方向布线; Clock该层为按一 点钟方向布线; Clock该层为按两点钟方向布线; Clock该层为按四点钟方向布线; Clock该层为按五点钟方向布线; 45Up该层为向上 45°方向布线、 45Down该层 为向下 45°方法布线; Fan Out该层以扇形方式布 线。

对于系统默认的双面板情况,一面布线采用 Horizontal方式另一面采用

Vertical方式。

5. Routing Corners(拐角)选项区域设置布线的拐角可以有 45°拐角、 90°拐角 和圆形拐角三种,如图 6-18所示。

图 6-18拐角设置从 Style上拉菜单栏中可以选择拐角的类型。如图 6-16中 Setback文本框用于设定拐角的长度。 To文本框用于设置拐角的大小。对于 90°拐 角如图 6-19所示,圆形拐角设置如图 6-20所示。

Setback	c 100mil
2 to	o 100mil
1	
	Setback

6. Routing Via Style (导孔)选项区域设置该规则设置用于设置布线中 导孔的尺寸,其界面如图 6-21所示。

dinimum	50mil		
4	Ellevil	🕗 🔰 🔰 Via Hole	e Size
raximum		Minimum Minimum	28mil
referred	50mil	Maximur	0 28mil
	5 52 52	(reministration)	20mm
		Preferre	1 28mil

可以调协的参数有导孔的直径 via Diameter和导孔中的通孔直径 Via HoleSize,包括 Maximum(最大值)、 Minimum(最小值)和 Preferred(最佳值)。设置时 需注意导孔直径和通孔直径的差值不宜过小,否则将不宜于制板加工。合适的差值 在 10mil以上。4阻焊层设计规则Mask(阻焊层设计)规则用于设置焊盘到阻焊层 的距离,有如下几种规则。

1 Mask Expansion(阻焊层延伸量)选项区域设置该规则用于设计从焊盘到阻碍焊层之间的延伸距离。在电路板的制作时,阻焊层要预留一部分空间给焊盘。这个延伸量就是防止阻焊层和焊盘相重叠,如图 6—22所示系统默认值为 4mil,Expansion设置预为设置延伸量的大小。

2 Mask Expansion (表面粘着元件延伸量)选项区域设置该规则设置表面粘着 元件的焊盘和焊锡层孔之间的距离,如图 6—23所示,图中的 Expansion设置项为 设置延伸量的大小。

~ Constraints	1	
$\overline{\mathbf{O}}$	Expansion 4n	il

Expansion	Omil
	->

5、内层设计规则

Plane(内层设计)规则用于多层板设计中,有如下几种设置规则。

1. Power Plane Connect Style(电源层连接方式)选项区域设置电源层连接方

式规则用于设置导孔到电源层的连接,其设置界面如图所示。

Connect Style Relief Connect 💌 🔽		4	Conductor Width	10mil
Conductors 2 3 4	5	27	Air-Gap	10mil
			Expansion	20mil

图中共有 5项设置项,分别是:Conner Style下拉列表:用于设置电源层和导孔的 连接风格。下拉列表中有 3个选项可以选择:Relief Connect(发散状连接),Direct connect(直接连接)和 No Connect(不连接)。工程制板中多采用发散状连接风 格。Condctor Width文本框:用于设置导通的导线宽度。Conductors复选项:用于 选择连通的导线的数目,可以有 2条或者 4条导线供选择。Air-Gap文本框:用于 设置空隙的间隔的宽度。Expansion文本框:用于设置从导孔到空隙的间隔之间的 距离。

2. Power Plane Clearance(电源层安全距离)选项区域设置该规则用于设置电源层 与穿过它的导孔之间的安全距离,即防止导线短路的最小距离,设置界面如图所示, 系统默认值 20mil。

Clearance	20mil

3. Polygon Connect style(敷铜连接方式)选项区域设置

该规则用于设置多边形敷铜与焊盘之间的连接方式,设置界面如图所示。

Relief Connect 💌	
Conductors	
02 04	
0 Angle	

该设置对话框中 Connect Style、 Conductors和 Conductor width的设置与Power Plane Connect Style选项设置意义相同,在此不同志赘述。最后可以设定敷铜与焊 盘之间的连接角度,有 90angle(90°)和 45Angle(45°)角两种方式可选。.6测 试点设计规则Testpiont(测试点设计)规则用于设计测试点的形状、用法等,有如 下几项设置。

1. Testpoint Style (测试点风格)选项区域设置该规则中可以指定测试

	Size	Hole Size	Use Existing SMD B	ottom Pad
Min	40mil	Omil	Use Existing Thru-H	ole Bottom Pad
Мах	100mil	40mil	Use Existing Via end	ling on Bottom Lay
Preferred	60mil	32mil	Create New SMD Bo	ottom Pad
Grid Size – Testpoint g	rid size 1r	nil	Use Existing SMD T	ole Bottom Pad op Pad
Allow	testpoint <u>u</u> nd	ler component		ˈhru- <u>H</u> ole Top
			🗹 <u>B</u> ottom 🗹 T	hru- <u>H</u> ole Bottom

图测试点风格设置该设置对话框有如下选项:Size文本框为测试点的大小, Hole Size文本框为测试点的导孔的大小,可以指定 Min(最小值)、 Max(最大值)和 Preferred(最优值)。

Grid Size文本框:用于设置测试点的网格大小。系统默认为 1mil大小。

Allow testpoint under component复选项:用于选择是否允许将测试点放置在元件下面。复选项 Top、 Bottom等选择可以将测试点放置在哪些层面上。右边多项复选项设置所允许的测试点的放置层和放置次序。系统默认为所有规则都选中。

2. Testpoint Usage (测试点用法)选项区域设置测试点

用法设置的界面如图所示。

llow	multiple testpoints on same net	
c I€	estpoint	
\odot	<u>R</u> equired	
0	<u>I</u> nvalid	
0	Don't care	

图测试点用法设置该设置对话框有如下选项 :Allow multiple testpoints on same net 复选项:用于设置是否可以在同一网络上允许多个测试点存在。Testpoint选项区域中的单选项选择对测试点的处理,可以是 Required (必须处理)、 Invalid (无效的测试点)和 Don't care (可忽略的测试点)。

6.7电路板制板规则Manufacturing(电路板制板)规则用于对电路板制板的设置,有 如下几类设置:

1. Minimum annular Ring(最小焊盘环宽)选项区域设置电路板制作时的最小焊盘 宽度,即焊盘外直径和导孔直径之间的有效期值,系统默认值为 10 mil。

2.Acute Angle (导线夹角设置)选项区域设置对于两条铜膜导线的交角,不小于 90°。

3. Hole size(导孔直径设置)选项区域设置该规则用于设置导孔的内直径大小。可 以指定导孔的内直径的最大值和最小值。Measurement Method下拉列表中有两种选 项: Absolute以绝对尺寸来设计, Percent以相对的比例来设计。采用绝对尺寸的导 孔直径设置对话框如图 6—

29所示(以 mil为单位)。

Measure	ment Metho	d Absolute	-
Minimum	1 mil		
Махітип	100mil	\sim	
	0		
))
)

图 6—29导孔直径设置对话框

4. Layers Pais(使用板层对)选项区域设置在设计多层板时,如果使用了盲导孔, 就要在这里对板层对进行设置。对话框中的复选取项用于选择是否允许使用板层对

(layers pairs) 设置。小结

对 AD提供的 10种布线规则进行了介绍,在设计规则中介绍了每条规则的功能和设置方法。这些规则的设置属于电路设计中的较高级的技巧,它设计到很多算法的知识。掌握这些规则的设置,就能设计出高质量的 PCB电路。